260 research outputs found

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Study of the atmospheric turbulence in free space optical communications

    Get PDF
    Abstract-In this paper the effect of atmospheric turbulence on free space optical (FSO) communications is investigated experimentally by designing a turbulence simulation chamber. The distributions of bits ‘0 ’ and ‘1 ’ levels are measured with and without turbulence. The bit error rate (BER) is then obtained from the distributions. The temperature gradient within the channel is less than 6 °C resulting in turbulence of log irradiance variance of 0.002. The received average signal is measured and used to characterise the simulated turbulence strength. We then evaluated the BER with turbulence and found that from an error free link in the absence of turbulence, the BER increased significantly to about 10-4 due to the turbulence effect. I

    Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel

    Get PDF
    In this paper, analytical and simulation results for the bit error rate (BER) performance and fading penalty of a coherent optical binary polarization shift keying (2PolSK) heterodyne system adopted for a free space optical (FSO) communication link modeled as the log-normal and the negative exponential atmospheric turbulence channels are presented. The conditional and unconditional BER expressions are derived, demonstrating the comprehensive similarity between the 2PolSK and the binary frequency shift keying (2FSK) schemes with regards to the system sensitivity. The power penalty due to the non-ideal polarization beam splitter (PBS) is also analyzed. The receiver sensitivity employing 2PolSK is compared with other modulation schemes in the presence of turbulence and the phase noise. The results show that 2PolSK offers improved signal-to-noise ratio (SNR) performance compared to the binary amplitude shift keying (2ASK)

    Error mitigation using RaptorQ codes in an experimental indoor free space optical link under the influence of turbulence

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in [journal] and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital LibraryIn free space optical (FSO) communications, several factors can strongly affect the link quality. Among them, one of the most important impairments that can degrade the FSO link quality and its reliability even under the clear sky conditions consists of optical turbulence. In this work, the authors investigate the generation of both weak and moderate turbulence regimes in an indoor environment to assess the FSO link quality. In particular, they show that, due to the presence of the turbulence, the link experiences both erasure errors and packet losses during transmission, and also compare the experimental statistical distribution of samples with the predicted Gamma Gamma model. Furthermore, the authors demonstrate that the application of the RaptorQ codes noticeably improves the link quality decreasing the packet error rate (PER) by about an order of magnitude, also offering in certain cases an error-free transmission with a PER of ∼10−2 at Rytov variance value of 0.5. The results show that the recovery rate increases with the redundancy, the packet length and the number of source packets, and it decreases with increasing data rates.This work was supported by the European Space Agency under grant no. 5401001020. We are very grateful to Dr. E. Armandillo for enlightening discussions. This research project also falls within the frame of COST ICT Action IC1101 - Optical Wireless Communications - An Emerging Technology (OPTICWISE). J. Perez's work is supported by Spanish MINECO Juan de la Cierva JCI-2012-14805.Pernice, R.; Parisi, A.; Ando, A.; Mangione, S.; Garbo, G.; Busacca, AC.; Perez, J.... (2015). Error mitigation using RaptorQ codes in an experimental indoor free space optical link under the influence of turbulence. IET Communications. 9(14):1800-1806. https://doi.org/10.1049/iet-com.2015.0235S18001806914Tsukamoto, K., Hashimoto, A., Aburakawa, Y., & Matsumoto, M. (2009). The case for free space. IEEE Microwave Magazine, 10(5), 84-92. doi:10.1109/mmm.2009.933086Paraskevopoulos, A., Vučić, J., Voss, S.-H., Swoboda, R., & Langer, K.-D. (2010). Optical Wireless Communication Systems in the Mb/s to Gb/s Range, Suitable for Industrial Applications. IEEE/ASME Transactions on Mechatronics, 15(4), 541-547. doi:10.1109/tmech.2010.2051814Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Perez, J., & Ijaz, M. (2012). Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 30(13), 2188-2194. doi:10.1109/jlt.2012.2194271Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, V., & Matsumoto, M. (2009). 1.28-Tb/s (32 ×\times 40 Gb/s) Free-Space Optical WDM Transmission System. IEEE Photonics Technology Letters, 21(16), 1121-1123. doi:10.1109/lpt.2009.2021149Parca, G. (2013). Optical wireless transmission at 1.6-Tbit/s (16×100  Gbit/s) for next-generation convergent urban infrastructures. Optical Engineering, 52(11), 116102. doi:10.1117/1.oe.52.11.116102Hulea, M., Ghassemlooy, Z., Rajbhandari, S., & Tang, X. (2014). Compensating for Optical Beam Scattering and Wandering in FSO Communications. Journal of Lightwave Technology, 32(7), 1323-1328. doi:10.1109/jlt.2014.2304182Ghassemlooy, Z., Popoola, W. O., Ahmadi, V., & Leitgeb, E. (2009). MIMO Free-Space Optical Communication Employing Subcarrier Intensity Modulation in Atmospheric Turbulence Channels. Communications Infrastructure. Systems and Applications in Europe, 61-73. doi:10.1007/978-3-642-11284-3_7Garcia-Zambrana, A. (2007). Error rate performance for STBC in free-space optical communications through strong atmospheric turbulence. IEEE Communications Letters, 11(5), 390-392. doi:10.1109/lcomm.2007.061980Abou-Rjeily, C. (2011). On the Optimality of the Selection Transmit Diversity for MIMO-FSO Links with Feedback. IEEE Communications Letters, 15(6), 641-643. doi:10.1109/lcomm.2011.041411.110312GarcĂ­a-Zambrana, A., Castillo-VĂĄzquez, C., & Castillo-VĂĄzquez, B. (2010). Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods. Optics Express, 18(24), 25422. doi:10.1364/oe.18.025422Andò, A., Mangione, S., Curcio, L., Stivala, S., Garbo, G., Pernice, R., & Busacca, A. C. (2013). Recovery Capabilities of Rateless Codes on Simulated Turbulent Terrestrial Free Space Optics Channel Model. International Journal of Antennas and Propagation, 2013, 1-8. doi:10.1155/2013/692915MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings - Communications, 152(6), 1062. doi:10.1049/ip-com:20050237Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551-2567. doi:10.1109/tit.2006.874390Anguita, J. A., Neifeld, M. A., Hildner, B., & Vasic, B. (2010). Rateless Coding on Experimental Temporally Correlated FSO Channels. Journal of Lightwave Technology, 28(7), 990-1002. doi:10.1109/jlt.2010.2040136Wang, N., & Cheng, J. (2010). Moment-based estimation for the shape parameters of the Gamma-Gamma atmospheric turbulence model. Optics Express, 18(12), 12824. doi:10.1364/oe.18.012824Zvanovec, S., Perez, J., Ghassemlooy, Z., Rajbhandari, S., & Libich, J. (2013). Route diversity analyses for free-space optical wireless links within turbulent scenarios. Optics Express, 21(6), 7641. doi:10.1364/oe.21.007641Pernice, R., Perez, J., Ghassemlooy, Z., Stivala, S., Cardinale, M., Curcio, L., … Parisi, A. (2015). Indoor free space optics link under the weak turbulence regime: measurements and model validation. IET Communications, 9(1), 62-70. doi:10.1049/iet-com.2014.043

    Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links.

    Get PDF
    The analysis and simulation for convolutional coded dual header pulse interval modulation (CC-DH-PIM) scheme using a rate ½ convolutional code with the constraint length of 3 is presented. Decoding is implemented using the Viterbi algorithm with a hard decision. Mathematical analysis for the slot error rate (SER) upper bounds is presented and results are compared with the simulated data for a number of different modulation techniques. The authors show that the coded DH-PIM outperforms the pulse position modulation (PPM) scheme and offers >4 dB code gain at the SER of 10?4 compared to the standard DH-PIM. Results presented show that the CC-DH-PIM with a higher constraint length of 7 offers a code gain of 2 dB at SER of 10?5 compared to the CC-DH-PIM with a constraint length of 3. However, in CC-DH-PIM the improvement in the error performance is achieved at the cost of reduced transmission throughput compared to the standard DH-PIM

    An ultrafast 1 x M all-optical WDM packet-switched router based on the PPM header address

    Get PDF
    This paper presents an all-optical 1 x M WDM router architecture for packet routing at multiple wavelengths simultaneously, with no wavelength conversion modules. The packet header address adopted is based on the pulse position modulation (PPM) format, thus enabling the use of only a singlebitwise optical AND gate for fast header address correlation. It offers multicast as well as broadcast capabilities. It is shown that a high speed packet routing at 160 Gb/s can be achieved with a low channel crosstalk (CXT) of ~ -27 dB at a channel spacing of greater than 0.4 THz and a demultiplexer bandwidth of 500 GHz

    Period dependent temperature and ambient index effects on long period fibre gratings

    Get PDF
    The ambient index and temperature effects on the spectral profiles of two sets of long period gratings (LPGs) of different periods were investigated. The shorter period LPGs were found to be more sensitive than the longer period LPGs over identical ambient index ranges but less sensitive over identical temperature ranges. The coupling wavelength shifts due to temperature are also seen to be linear and in opposite directions in each set of LPGs and unlike the ambient index shifts there seems to be no obvious modal dependency with respect to sensitivity in any individual LPG. The conclusion to this investigation is that it may be possible to design an LPG of such a period that parts of the spectral profile are unaffected by temperature whilst maintaining a reasonable ambient index sensitivity

    Indoor free space optics link under the weak turbulence regime: measurements and model validation

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in [journal] and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital LibraryIn this study, the authors present the measurements performed on a free space optics (FSO) communications link using an indoor atmospheric chamber. In particular, the authors have generated several different optical turbulence conditions, demonstrating how even the weak turbulence regime can strongly affect the FSO link performance. The authors have carried out an in-depth analysis of the data collected during the measurements, and calculated the turbulence strength (i.e. scintillation index and Rytov variance) and the important performance metrics (i.e. the Q-factor and bit error rate) to evaluate the FSO link quality. Moreover, the authors have tested, for the first time, an appositely developed temporally-correlated gamma-gamma channel model to generate the temporal irradiance fluctuations observed at the receiver. This has been accomplished by using a complete analysis tool that enables the authors to fully simulate the experimental FSO link. Finally, the authors compare the generated time-series with the collected experimental data, showing a good agreement and thus proving the effectiveness of the model.This work was supported by the European Space Agency under grant no. 5401001020. We are very grateful to Dr. E. Armandillo for enlightening discussions. J. Perez's work was support by Spanish MINECO Juan de la Cierva Fellowship JCI-2012-14805. This research project falls within the frame of COST ICT Action IC1101 - Optical Wireless Communications - An Emerging Technology (OPTICWISE).Pernice, R.; Ando, A.; Cardinale, M.; Curcio, L.; Stivala, S.; Parisi, A.; Busacca, AC.... (2015). Indoor free space optics link under the weak turbulence regime: measurements and model validation. IET Communications. 9(1):62-70. https://doi.org/10.1049/iet-com.2014.0432S627091Tsukamoto, K., Hashimoto, A., Aburakawa, Y., & Matsumoto, M. (2009). The case for free space. IEEE Microwave Magazine, 10(5), 84-92. doi:10.1109/mmm.2009.933086Suriza, A. Z., Md Rafiqul, I., Wajdi, A. K., & Naji, A. W. (2013). Proposed parameters of specific rain attenuation prediction for Free Space Optics link operating in tropical region. Journal of Atmospheric and Solar-Terrestrial Physics, 94, 93-99. doi:10.1016/j.jastp.2012.11.008Nebuloni, R. (2005). Empirical relationships between extinction coefficient and visibility in fog. Applied Optics, 44(18), 3795. doi:10.1364/ao.44.003795García-Zambrana, A., Castillo-Våzquez, C., & Castillo-Våzquez, B. (2011). Outage performance of MIMO FSO links over strong turbulence and misalignment fading channels. Optics Express, 19(14), 13480. doi:10.1364/oe.19.013480Shokrollahi, A. (2006). Raptor codes. IEEE Transactions on Information Theory, 52(6), 2551-2567. doi:10.1109/tit.2006.874390MacKay, D. J. C. (2005). Fountain codes. IEE Proceedings - Communications, 152(6), 1062. doi:10.1049/ip-com:20050237Uysal, M., Jing Li, & Meng Yu. (2006). Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 5(6), 1229-1233. doi:10.1109/twc.2006.1638639Tsiftsis, T. A. (2008). Performance of heterodyne wireless optical communication systems over gamma-gamma atmospheric turbulence channels. Electronics Letters, 44(5), 373. doi:10.1049/el:20083028Popoola, W. O., & Ghassemlooy, Z. (2009). BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence. Journal of Lightwave Technology, 27(8), 967-973. doi:10.1109/jlt.2008.2004950Nistazakis, H. E., Tsiftsis, T. A., & Tombras, G. S. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications, 3(8), 1402. doi:10.1049/iet-com.2008.0212Bayaki, E., Schober, R., & Mallik, R. (2009). Performance analysis of MIMO free-space optical systems in gamma-gamma fading. IEEE Transactions on Communications, 57(11), 3415-3424. doi:10.1109/tcomm.2009.11.080168Anguita, J. A., Neifeld, M. A., Hildner, B., & Vasic, B. (2010). Rateless Coding on Experimental Temporally Correlated FSO Channels. Journal of Lightwave Technology, 28(7), 990-1002. doi:10.1109/jlt.2010.2040136Andò, A., Mangione, S., Curcio, L., Stivala, S., Garbo, G., Pernice, R., & Busacca, A. C. (2013). Recovery Capabilities of Rateless Codes on Simulated Turbulent Terrestrial Free Space Optics Channel Model. International Journal of Antennas and Propagation, 2013, 1-8. doi:10.1155/2013/692915Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Perez, J., & Ijaz, M. (2012). Performance Analysis of Ethernet/Fast-Ethernet Free Space Optical Communications in a Controlled Weak Turbulence Condition. Journal of Lightwave Technology, 30(13), 2188-2194. doi:10.1109/jlt.2012.2194271Xiaoming Zhu, & Kahn, J. M. (2002). Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications, 50(8), 1293-1300. doi:10.1109/tcomm.2002.800829Xu, F., Khalighi, A., CaussÊ, P., & Bourennane, S. (2009). Channel coding and time-diversity for optical wireless links. Optics Express, 17(2), 872. doi:10.1364/oe.17.00087

    Filter-less WDM for visible light communications using colored pulse amplitude modulation

    Get PDF
    This paper demonstrates, for the first time, a new wavelength-division multiplexing (WDM) scheme for visible light communications using multi-level coloured pulse amplitude modulation (M-CPAM). Unlike traditional WDM, no optical bandpass filters are required and only a single optical detector is used. We show that, by transmitting n independent sets of weighted on-off keying non-return-to-zero data on separate wavelengths over a line-of-sight transmission path, the resultant additive symbols can be successfully demodulated. Hence, the data rates can be aggregated for a single user or divided into individual colours for multiple user access schemes. The system is empirically tested for M = 4 and 8 using an off-the-shelf red, green and blue (RGB) chip light emitting diode (LED). We demonstrate that for M = 4, using the R and B chips a bit error rate (BER) of ≤10-6 can be achieved for each wavelength at bit rates up to 10 Mbps, limited by the LEDs under test. For M = 8 using R, G and B a BER of ≤10-6 can be achieved for each wavelength at bit rates up to 5 Mbps

    Should Analogue Pre-Equalisers be Avoided in VLC Systems-

    Get PDF
    \ua9 2009-2012 IEEE.Visible light communication (VLC) systems are highly constrained by the limited 3-dB bandwidth of light-emitting diodes (LEDs). Analogue pre-equalisers have been proposed to extend the LED\u27s bandwidth at the cost of reduced signal-to-noise ratio (SNR). Compared with the pre-equaliser, the multi-carrier modulation with bit-loading can efficiently use the spectrum beyond the LED\u27s raw 3-dB bandwidth without incuring SNR penalties by employing multiple narrow quasi-flat sub-bands to eliminate the need for equalisation. In this work we show by means of theoretical and experimental investigation that VLC with multi-band carrierless amplitude and phase modulation with bit-loading can outperform VLC with analogue pre-equalisers
    • …
    corecore